
 

SSITunctions
We know functions as maps from the set

of real numbers R to R e g

y fG x X's 1 Ex El

More generally we have for sets X Y

Definitions
A Function f X Y identifies with

every point ex exactly a e image

y f EY Every zeX with y fez
is then denoted as preimage of y

Thus a function is defined through the
specification of a

a domain here x
an image here Y
a mapping rule mene x f x



Example 2 I
i f IR R X is x x

ii f I I 1 R X x X

iv h R 0 as X 1 7 2

v id X X X x id x

the identity map an X

We can represent functions through their graph
e y

0150151,0
x

2.1 Composition of maps
Yet f X Y g Yes 2 be maps

Through composition we obtain a new map
gof X Z x t glffxl

x
f Y 9 Z

F gof



Propositi
For maps f X Y g Y Z hi 2 W

we have

ho g of hog of associative law

Proofi
i The domains X are identical

ii The images Y are identical
iii we show equality of the mapping rule

V x c X we have

holgof x h gof Cx hcg fix
hog fkn Chog of x

Definition 2.2

Let f X Y be a map
i f is surjective Corinto if for each yet

there is atlee are preimage i e

V ye Y F x e X fCx g

f surjective

X y



ii f is injective or one to one if for
each y e Y there is almost one preimage
i e

V X x C X far I ffxz x Xz

V X X C X x tx ft fha

f injective

X y

iii f is bijective if for each yet
there is exactly one preimage i e

f is auto and one to one

seeg

If f is bijective then there exists an inverse

map g X X with the property
g of id fog idy



we also write g f
Exampled
i The map f IR R x is x x is

surjective but not injective
Ii The map f f th th f lil
with x sink is bijective

Proposition 2.2

Let f X Y be a map Then

i f is injective 3 g y X with gof id

ii f is surjective 7g Y X with fog idy
iii f is bijective 3g Y X

with fog idy gof id

Proofj
i t y e fCx fix HEX cY there is

exactly one pre image x 8cg
set gcg xoeX for yet fCX
Then g Y X is well defined and gofaidx

Ii For ye Y we have ACg ExeXl fad g to
Choose arbitrary x c Acy and set gap x

g Y X is well defined and fog gidy



3 Sequences and series

3.1 Examples
i Fibonacci numbers
7 I 2 3 5 8 13

arise from a simple population model from
the law

Ao I a 1 ant ant au V UE

NiiThe numbers from interest rates

an Ith h C IN

approach for n as the euler number

e 2 718 Definition of euler number

Iii The geometric series

Su It 9 t g't 9 g
of't n c IN

has far lag at the limit S If
3.2 Limit of a sequence
In fifth century BC the Greek philosopher Zeno

asked Who will win in a race between Achilles
and a tortoise a as a asAchilles
tortoise t te 9 Ha



The paradox can be explained by noting
that the sequences Can neµ and Ctu ueay
positions of Achilles and positions of the tortoise
approach a common limit namely
the point were Achilles overtakes the tortoise
Let can neµ Ca as as be a sequence
in IR ae R

Definition 3.1

i The sequence au new converges to a

far n as if
tf c OF no no E E IN V n z no Ian all 9
We then write

a fingasan or an a n as

and call a the limit of the sequence
au n e IN

ii A sequence Can ueµ is called convergent

if it has a limit otherwise the sequence
is called divergent
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Example 3.1

i For an In he 1N an 0 n a

Ii Let g e R with ocq.LI Then 9.40
n as

Lemma 3.1 Bernoulli inequality
Let x s l Then we have

tf ne 1N It x It nx

Proof
Induction
a h I

b n htt

assume Hx z It nx induction assumption
I x Hx Hx zClthx Hx

Z O



It htt x 1 IX 2 It htt x
20 a

Proof of Example 3.1
i For each so there is an no C IN with

no t or to a E

t n z no i Koskela CE

ii write f Its with S o The Bernoulli

inequality then gives
t he 1N gin f It 8 z H n 82h8

tf ne N 0cg Efg
For c 0 choose no no with CES

Then V n's no 0 9 Ent E not E
a

Proposition 3 1 triangle inequality
F x y E IR Ix YI E KI t 171

Proof
For every XER we have EM x c txt

Therefore y e 1 1 lyl City C x Cg Ethyl
I



Example32i
Not every sequence can ueµ converges as the

following examples show

i Let an C IT ne IN Then for each a e R

ne N we have from Prop 3.1

Ian att tant a 121Can a cane a 1 2

and no AER can be the limit of Canker
ii Let an n ne IN For each aelR there is

an no C IN such that as no

f n z no Ian al h a 2 no 950

a is not limit of caul
Iii Fibonacci numbers

F L F L Fut Fu Fm Cn 32

induction Fn en n C IN
no limit I

Proposition 3.2

Let au her converge to a HR as well as to beR

Then a _b



Proofi
Assume a b Choose E lbft o

and no hold with

H h Z no Ian al CE Ian b LE

Then we have for nz no

2C la bl Ica au lb au

Ela ault lb ant 2E

contradiction
Il

Proposition 3.3 computation with limits

Let the sequences Can ueN b new CR be

convergent with fizzan a finasbu b

Then the sequences Cantb new Can b nap

converge and
i Ling faut bn atb nhiszantfizb.ir
ii finascan.ba a.b nhIzsan.fiyzbu
Iii If in addition b totbu for all u then

we have figs Canton a b

iv If an c bn for ne N then also a e b



Remark 3 I

If an bn he IN then it does in general
not follow that a b

Example
an O L NI bn he 1N

with fizzan o fizz.ba

Proof of Prop 3.3

For E 0 let no no 6 c IN such that

nano Ian al e e Ibn bl c e

i t n z no ICan bn Catb Klan attIbn ble 2e
ii Let E 1 Then we have

F nano Ibn le Ibn b l Ibl c Ibl 1
and

f n z n Ianbu ab Kan a bntacbn b I
E lbut Ian att Lal Ibn bl
E lait lb It 1 e

alalogously iii and iv
a


