§2. Functions
We know functions as maps from the set of real numbers \mathbb{R} to $\mathbb{R}, ~ e . g$.

$$
y=f(x)=x-x^{3}, \quad-1 \leq x \leq 1
$$

More generally, we have for sets X, Y :
Definition 2.1:
A "Function" $f: X \rightarrow Y$ identifies with every point $x \in X$ exactly one "image" $y=f(x) \in Y$. Every $z \in X$ with $y=f(z)$ is then denoted as "preimage" of y.

Thus a function is defined through the specification of:

- a "domain" (here X)
- an "image" (here Y)
- a "mapping rule" (here $x \mapsto f(x)$)

Example 2.1:
i) $f: \mathbb{R} \rightarrow \mathbb{R} ; \quad x \mapsto x-x^{3}$
ii) $f:[-1,1] \rightarrow \mathbb{R} ; \quad x \mapsto x-x^{3}$;
iv) $h: \mathbb{R} \rightarrow[0, \infty), x \mapsto x^{2}$;
v) $i d_{x}: x \rightarrow x, \quad x \mapsto x=i d_{x}(x)$;
the identity map on X.
We can represent functions through their "graph":

§2.1 Composition of maps
Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be maps
Through composition we obtain a now map

$$
\begin{aligned}
& g \circ f: X \rightarrow Z, \quad x \longmapsto g(f(x)) \\
& \underset{F=g \circ f}{x \xrightarrow{f}}
\end{aligned}
$$

Proposition 2.1 :
For maps $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$ we have

$$
h \circ(g \circ f)=(h \circ g) \circ f \quad \text { (associative law) }
$$

Proof:
i) The domains X are identical
ii) The images Y are identical
iii) We show equality of the mapping rule:
$\forall x \in X$ we have

$$
\begin{gathered}
(h \circ(g \circ f))(x)=h((g \circ f)(x))=h(g(f(x))) \\
=\operatorname{hog}(f(x))=((h \circ g) \circ f)(x)
\end{gathered}
$$

Definition 2.2:
Let $f: X \rightarrow Y$ be a map.
i) f is "surjective" (ar "onto"), if for each $y \in Y$ there is at least are preimage, i.e.
 f surjective
ii) f is "infective" (or "one-to-one"), if for each $y \in Y$ there is at most one preimage, i.e

$$
\begin{aligned}
& \forall \quad x_{1}, x_{2} \in X: \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \\
& \Leftrightarrow \quad \forall \quad x_{1}, x_{2} \in X: \quad x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
\end{aligned}
$$

f infective
iii) f is "bijective", if for each $y \in Y$ there is exactly one preimage, ie. f is onto and ane-to-ane.

f is bijective with inverse g

If f is bijective, then there exists an" inverse map" $g: Y \rightarrow X$ with the property $g \circ f=i d x, \quad f \circ g=i d_{y}$

We also write $g=f^{-1}$.
Example 2.2:
i) The map $f: \mathbb{R} \rightarrow \mathbb{R} ; x \rightarrow x-x^{3}$ is surjective but not in jective
ii) The map $f:(-\pi / 2, \pi / 2) \rightarrow(-1,1)$ with $x \mapsto \sin (x)$ is bijective
Proposition 2.2:
Let $f: X \rightarrow Y$ be a map. Then
i) f is infective $\Rightarrow \exists g: Y \rightarrow X$ with $g_{\circ} f=i d_{X}$
ii) f is suvjective $\Rightarrow \exists g: Y \rightarrow X$ with $f \circ g=i d y$
iii) f is bijectine $\Rightarrow \exists g: Y \rightarrow X$

$$
\text { with } f \circ g=i d y, \quad g \circ f=i d_{x}
$$

Proof:
i) $\forall y \in f(x)=\{f(x) \mid x \in X\} \subset Y$ there is exactly are preimage $x:=g(y)$
Set $g(y)=x_{0} \in X$ for $y \notin f(x)$
Then $g: Y \rightarrow X$ is woll-defined and $g o f=i d x$
ii) For $y \in Y$ we have $A(y)=\{x \in X \mid f(x)=y\} \neq \varnothing$.

Choose arbitrary $x \in A(y)$ and set $g(y)=x$
$\Rightarrow g: Y \rightarrow X$ is well-defined and $f \circ g=i d y$.
$\oint 3$. Sequences and series
§3.1 Examples
i) "Fibonacci numbers

$$
1,1,2,3,5,8,13, \cdots
$$

arise from a simple population model from the law

$$
a_{0}=1, a_{1}=1, a_{n+1}=a_{n}+a_{n-1}, \quad \forall n \in \mathbb{N}
$$

ii) The numbers (from interest rates)

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}, \quad n \in \mathbb{N}
$$

approach for $n \rightarrow \infty$ the euler number
$e=2.718 \cdots$ (Definition of euler number)
iii) The geometric series

$$
S_{n}=1+q+q^{2}+\cdots+q^{n}=\sum_{k=0}^{n} q^{k}, n \in \mathbb{N},
$$

has for $-1<q<1$ the "limit" $s=\frac{1}{1-q}$
§3.2 Limit of a sequence
In fifth century BC the Greek philosopher Zeno asked: Who will win in a race between Achilles and a tortoise?

The paradox can be explained by noting that the sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(t_{n}\right)_{n \in \mathbb{N}}$ (positions of Achilles and positions of the tortoise) approach a common "limit", namely the point were Achilles overtakes the tortoise.
\rightarrow Let $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be a sequence in $\mathbb{R}, a \in \mathbb{R}$.
Definition 3.1:
i) The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ "converges" to a for $n \longrightarrow \infty$, if

$$
\forall \varepsilon>0 \quad \exists n_{0}=n_{0}(\varepsilon) \in \mathbb{N} \quad \forall n \geq n_{0}:\left|a_{n}-a\right|<\varepsilon_{i}
$$

We then write

$$
a=\lim _{n \rightarrow \infty} a_{n} \quad \text { or } a_{n} \longrightarrow a(n \rightarrow \infty)
$$

and call a the "limit" of the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$.
ii) A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called "convergent", if it has a limit; otherwise the sequence is called "divergent".

Example 3.1:
i) For $a_{n}=\frac{1}{n}, n \in \mathbb{N}, a_{n} \longrightarrow 0(n \rightarrow \infty)$
ii) Let $q \in \mathbb{R}$ with $0<q<1$. Then $q^{n} \rightarrow 0$ $(n \rightarrow \infty)$

Lemma 3.1 (Bernoulli inequality)
Let $x>-1$. Then we have:

$$
\forall n \in \mathbb{N}:(1+x)^{n} \geq 1+n x
$$

Proof:
Induction:
a) $n=1$
b) $n \mapsto n+1$:
assume $(1+x)^{n} \geq 1+n x$ ("induction assumption")

$$
\Rightarrow(1+x)^{n+1}=(1+x)^{n} \underbrace{(1+x)}_{\geq 0} \geq(1+n x)(1+x)
$$

$$
=1+(n+1) x+\underbrace{n^{2} x}_{\geq 0} \geq 1+(n+1) x
$$

Proof of Example 3.1:
i) For each $\varepsilon>0$ there is an $n_{0} \in \mathbb{N}$ with

$$
\begin{aligned}
n_{0}> & \frac{1}{\varepsilon} \text { or } \frac{1}{n_{0}}<\varepsilon \\
& \Rightarrow \forall n \geq n_{0}:-\varepsilon<0<\frac{1}{n} \leq \frac{1}{n_{0}}<\varepsilon
\end{aligned}
$$

ii) Write $\frac{1}{q}=1+\delta$ with $\delta>0$. The Bernoulli inequality then gives

$$
\begin{aligned}
& \forall n \in \mathbb{N}: \frac{1}{q^{n}}=\left(\frac{1}{q}\right)^{n}=(1+\delta)^{n} \geq 1+n \delta \geq n \delta \\
\Rightarrow & \forall n \in \mathbb{N}: 0<q^{n} \leq \frac{1}{n \delta}
\end{aligned}
$$

For $\varepsilon>0$ choose $n_{0}=n_{0}(\varepsilon)$ with $\frac{1}{n_{0}}<\sum \delta$
Then $\forall n \geq n_{0}: 0<q^{n} \leq \frac{1}{n \delta} \leq \frac{1}{n_{0} \delta}<\varepsilon$
Proposition 3.1 (triangle-inequality)

$$
\forall x, y \in \mathbb{R}:|x+y| \leq|x|+|y|
$$

Proof:
For every $x \in \mathbb{R}$ we have $x \leq|x|,-x \leq|x|$.
Therefore,

$$
x+y \leq|x|+|y|,-(x+y)=(-x)+(-y) \leqslant|x|+|y|
$$

Example 3.2:
Not every sequence $\left(a_{n}\right)_{n e \mathbb{N}}$ converges, as the following examples show:
i) Let $a_{n}=(-1)^{n}, n \in \mathbb{N}$. Then for each $a \in \mathbb{R}$, $n \in \mathbb{N}$ we have from Prop. 3.1:

$$
\left|a_{n}-a\right|+\left|a_{n+1}-a\right| \geq\left|\left(a_{n}-a\right)-\left(a_{n+1}-a\right)\right|=2
$$

and no $a \in \mathbb{R}$ can be the limit of $\left(a_{n}\right)_{n \in \mathbb{N}}$
ii) Let $a_{n}=n, n \in \mathbb{N}$. For each $a \in \mathbb{R}$ there is an $n_{0} \in \mathbb{N}$ such that $a<n_{0}$

$$
\Rightarrow \forall n \geq n_{0}:\left|a_{n}-a\right|=n-a \geq n_{0}-a>0
$$

$\Rightarrow a$ is not limit of $\left(a_{n}\right)$.
iii) Fibonacci-numbers:

$$
F_{0}=1, \quad F_{1}=1, \quad F_{n+1}=F_{n}+F_{n-1} \quad(n \geq 2)
$$

induction $\Rightarrow F_{n} \geq n, n \in \mathbb{N}$
\Rightarrow no limit.
Proposition 3.2:
Let $\left(a_{n}\right)_{n \in N}$ converge to $a \in \mathbb{R}$ as well as to be \mathbb{R}. Then $a=b$.

Proof:
Assume $a \neq b$. Choose $\varepsilon=\frac{|b-a|}{2}>0$ and $n_{0}=n_{0}(\Sigma)$ with

$$
\forall n \geq n_{0}: \quad\left|a_{n}-a\right|<\varepsilon,\left|a_{n}-b\right|<\varepsilon
$$

Then we have for $n \geq n_{0}$:

$$
\begin{aligned}
2 \varepsilon=|a-b| & =\left|\left(a-a_{n}\right)-\left(b-a_{n}\right)\right| \\
& \leqslant\left|a-a_{n}\right|+\left|b-a_{n}\right|<2 \Sigma
\end{aligned}
$$

4 contradiction
Proposition 3.3 (computation with limits)
Let the sequences $\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be convergent with $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$.
Then the sequences $\left(a_{n}+b_{n}\right)_{n \in \mathbb{N}},\left(a_{n} \cdot b_{n}\right)_{n \in \mathbb{N}}$ converge and
i) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$,
ii) $\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=a \cdot b=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$,
iii) If in addition $b \neq 0 \neq b_{n}$ for all n, then we have $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=a / b$
iv) If $a_{n} \leq b_{n}$ for $n \in N$, then also $a \leq b$

Remark 3.1:
If $a_{n}<b_{n}, n \in \mathbb{N}$, then it does in general not follow that $a<b$.
Example

$$
\begin{aligned}
& a_{n}:=0<\frac{1}{n}=b_{n}, n \in \mathbb{N} \text {, } \\
& \text { with } \lim _{n \rightarrow \infty} a_{n}=0=\lim _{n \rightarrow \infty} b_{n}
\end{aligned}
$$

Proof of Prop. 3.3:
For $\varepsilon>0$ let $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\forall n \geq n_{0}:\left|a_{n}-a\right|<\varepsilon, \quad\left|b_{n}-b\right|<\varepsilon
$$

i) $\forall n \geq n_{0}:\left|\left(a_{n}+b_{n}\right)-(a+b)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<2 \varepsilon$
ii) Let $\varepsilon<1$. Then we have

$$
\forall n \geq n_{0}:\left|b_{n}\right| \leq\left|b_{n}-b\right|+|b| \leq|b|+1
$$

and

$$
\begin{aligned}
\forall & n \geq n_{0}:\left|a_{n} b_{n}-a b\right|=\left|\left(a_{n}-a\right) b_{n}+a\left(b_{n}-b\right)\right| \\
& \leq\left|b_{n}\right| \cdot\left|a_{n}-a\right|+|a| \cdot\left|b_{n}-b\right| \\
& \leq(|a|+|b|+1) \varepsilon
\end{aligned}
$$

alalogously iii) and iv)

