$$F_{xample 2.} | :$$
i) $f: \mathbb{R} \to \mathbb{R}$; $x \mapsto x - x^{3}$
ii) $f: [-1, 1] \to \mathbb{R}$; $x \mapsto x - x^{3}$;
iv) $h: \mathbb{R} \to [0, \infty)$; $x \mapsto x^{2}$;
v) $id_{x}: X \to X$, $x \mapsto x = id_{x}(x)$;
the identity map on X.
We can represent functions through their graph.

$$\frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition we obtain a new map}}{0.5 \quad 1.0 \quad 1.0 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0} \times \frac{\$ 2.1 \quad \text{Composition of maps}}{0.5 \quad 1.0 \quad$$

Proposition 2.1:
For maps
$$f: X \rightarrow Y$$
, $g: Y \rightarrow Z$, $h: Z \rightarrow W$
we have
 $ho(g \circ f) = (h \circ g) \circ f$ (associative law)
Proof:
i) The domains X are identical
ii) The images Y are identical
iii) We show equality of the mapping rule:
 $\forall x \in X$ we have
 $(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$
 $= h \circ g(f(x)) = ((h \circ g) \circ f)(x)$

Definition 2.2:
Xet
$$f: X \longrightarrow Y$$
 be a map.
i) f is "surjective" (ar anto"), if for each $g \in Y$
there is at least one preimage, i.e.
 $\forall g \in Y \exists x \in X : f(x) = g$.
 $\forall y \in Y \exists x \in X : f(x) = g$.

We also write
$$g = f^{-1}$$
.
Example 1.2:
i) The map $f: \mathbb{R} \to \mathbb{R}$; $x \mapsto x - x^{3}$ is
surjective but not injective
ii) The map $f: (-\pi_{A_{1}}\pi_{A}) \to (-1, 1)$
with $x \mapsto \sin(x)$ is bijective
Proposition 1.7:
Xet $f: X \to Y$ be a map. Then
i) f is injective $\Rightarrow \exists g: Y \to X$ with $g \circ f = id_{X}$
ii) f is surjective $\Rightarrow \exists g: Y \to X$ with $f \circ g = id_{X}$
iii) f is bijective $\Rightarrow \exists g: Y \to X$ with $f \circ g = id_{X}$
iii) f is bijective $\Rightarrow \exists g: Y \to X$ with $f \circ g = id_{X}$
iii) f is bijective $\Rightarrow \exists g: Y \to X$ with $f \circ g = id_{X}$
 $\lim_{i \to 0} f \circ g = id_{Y}, g \circ f = id_{X}$
 $\frac{\operatorname{Proof}_{i}}{\operatorname{Set}} g(g) = x \circ e^{X}$ for $g \notin f(X)$
Then $g: Y \to X$ is woll-defined and $g \circ f = id_{X}$
ii) For $g \in Y$ we have $A(g) = \{x \in X\} f(X) = g\} \neq \emptyset$.
Choose arbitrary $x \in A(g)$ and set $g(g) = x$
 $\Rightarrow g: Y \to X$ is well-defined and $f \circ g = id_{Y}$.

\$3. Sequences and series §3.1 Examples i) "Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, - arise from a simple population model from the law $a_0 = 1$, $a_1 = 1$, $a_{n+1} = a_n + a_{n-1}$, $\forall n \in \mathbb{N}$ ii) The numbers (from interest rates) $a_n = \left(1 + \frac{1}{n}\right)^n, \quad n \in \mathbb{N}$ approach for n -> >> the euler number e = 2.718 --- (Definition of euler number) iii) The geometric series $S_{n} = |+q + q^{2} + \dots + q^{n} = \sum_{k=1}^{n} q^{k}, n \in \mathbb{N},$ has for -1 < q < 1 the "limit" $S = \frac{1}{1-q}$ \$3.2 Zimit of a sequence In fifth century BC the Greek philosopher Zeno asked: Who will win in a race between Adrilles and a tortoise ? Achilles". fortoise

$$= 1 + (n+1)x + \frac{n^{2}x}{20} \ge 1 + (n+1)x$$

$$= 1 + (n+1)x + \frac{n^{2}x}{20} \ge 1 + (n+1)x$$

$$= \frac{1}{2} \circ \frac{1}{2} - \frac{1}{2} = \frac{1}$$

Example 3.2:
Not every sequence (a)new converges, as the
following examples show:
i) Let
$$a_n = (-1)^n$$
, new. Then for each as R,
new we have from Prop. 3.1:
 $|a_n-a|+|a_{n+1}-a| \ge |(a_n-a)-(a_{n+1}-a)| = 2$,
and no as R can be the limit of (a)new
ii) Let $a_n = n$, new. For each as R there is
an no eN such that $a < n$.
 $\Rightarrow \forall n \ge n_0: |a_n-a| = n-a \ge n_0-a>0$
 $\Rightarrow a$ is not limit of (a_n).
iii) Fibonacci-numbers:
 $F_0 = 1$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$ ($n \ge 2$)
induction $\Rightarrow F_n \ge n$, $n \in \mathbb{N}$
 \Rightarrow no limit.
Proposition 3.2:

Let
$$(a_n)_{n \in \mathbb{N}}$$
 converge to a eff as well as to bet.
Then $a = b$.

Proof:
Assume
$$a \neq b$$
. Choose $\varepsilon = \frac{|b-a|}{2} > 0$
and $n_o = n_o(\varepsilon)$ with
 $\forall n \ge n_o: |a_n - a| < \varepsilon, |a_n - b| < \varepsilon$
Then we have for $n \ge n_o:$
 $2\varepsilon = |a - b| = |(a - a_n) - (b - a_n)|$
 $\leq |a - a_n| + |b - a_n| < 2\varepsilon$
 $\frac{1}{2}$ contradiction
 \square
Proposition 3.3 (computation with limits)
 $\frac{1}{2}\varepsilon$ the sequences $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ be
convergent with $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$.
Then the sequences $(a_n + b_n)_{n \in \mathbb{N}}$, $(a_n - b_n)_{n \in \mathbb{N}}$
converge and
i) $\lim_{n \to \infty} (a_n + b_n) = a + b = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$,
ii) $\lim_{n \to \infty} (a_n - b_n) = a + b = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$,
iii) If in addition $b \neq 0 \neq b_n$ for all n , then
we have $\lim_{n \to \infty} (a_n - b_n) = a_b$
iv) If $a_n \leq b_n$ for $n \in \mathbb{N}$, then also $a \leq b$

$$\frac{\operatorname{Remark} 3.|:}{If a_{n} < b_{n}, n \in \mathbb{N}, \text{ then it does in general}}$$

$$If a_{n} < b_{n}, n \in \mathbb{N}, \text{ then it does in general}$$

$$not \text{ follow that } a < b.$$

$$Example$$

$$a_{n} := 0 < \frac{1}{n} =: b_{n}, n \in \mathbb{N},$$
with $\lim_{n \to \infty} a_{n} = 0 = \lim_{n \to \infty} b_{n}$

$$\frac{\operatorname{Proof} of \operatorname{Prop. 3.3:}}{n \to \infty}$$
For $\varepsilon > 0$ let $n_{0} = n_{0}(\varepsilon) \in \mathbb{N}$ such that
$$\forall n \geq n_{0}: |a_{n} - a| < \varepsilon, |b_{n} - b| < \varepsilon$$

$$i) \forall n \geq n_{0}: |(a_{n} + b_{n}) - (a + b)| \leq |a_{n} - a| + |b_{n} - b| < 2\varepsilon$$

$$ii) \quad \text{Xet } \varepsilon < 1. \text{ Then we have}$$

$$\forall n \geq n_{0}: |b_{n}| \leq |b_{n} - b| + |b_{0}| \leq |b_{0}| + 1$$

$$and \quad \forall n \geq n_{0}: |a_{n} b_{n} - ab| = |(a_{n} - a)b_{n} + a(b_{n} - b)|$$

$$\leq |b_{n}| \cdot |a_{n} - a| + |a| \cdot |b_{n} - b|$$

$$\leq (|a| + |b| + 1)\varepsilon$$

$$calalogously iii) and iv)$$